
Supporting Controlled Experimentation with Testing Techniques:

An Infrastructure and its Potential Impact

Hyunsook Do, Sebastian Elbaum, Gregg Rothermel

Department of Computer Science and Engineering

University of Nebraska - Lincoln

Lincoln, NE

{dohy, elbaum, grother}@cse.unl.edu

July 22, 2005

Abstract

Where the creation, understanding, and assessment of software testing and regression testing techniques
are concerned, controlled experimentation is an indispensable research methodology. Obtaining the infras-
tructure necessary to support such experimentation, however, is difficult and expensive. As a result, progress
in experimentation with testing techniques has been slow, and empirical data on the costs and effectiveness of
techniques remains relatively scarce. To help address this problem, we have been designing and constructing
infrastructure to support controlled experimentation with testing and regression testing techniques. This
paper reports on the challenges faced by researchers experimenting with testing techniques, including those
that inform the design of our infrastructure. The paper then describes the infrastructure that we are creating
in response to these challenges, and that we are now making available to other researchers, and discusses
the impact that this infrastructure has had and can be expected to have.

Keywords: software testing, regression testing, controlled experimentation, experiment infrastructure.

1 Introduction

Testing is an important engineering activity responsible for a significant portion of the costs of developing and

maintaining software [4, 28]. It is important for researchers and practitioners to understand the tradeoffs

and factors that influence testing techniques. Some understanding can be obtained by using analytical

frameworks, subsumption relationships, or axioms [37, 40, 46]. In general, however, testing techniques are

heuristics and their performance varies with different scenarios; thus, they must be studied empirically.

The initial, development testing of a software system is important; however, software that succeeds

evolves, and over time, more effort is spent re-validating a software system’s subsequent releases than is

spent performing initial, development testing. This re-validation activity is known as regression testing, and

includes tasks such as re-executing existing tests [34], selecting subsets of test suites [9, 41], prioritizing test

cases to facilitate earlier detection of faults [16, 42, 49], augmenting test suites to cover system enhancements

[6, 39], and maintaining test suites [20, 21, 30]. These tasks, too, involve many cost-benefits tradeoffs and

depend on many factors, and must be studied empirically.

Many testing and regression testing techniques involve activities performed by engineers, and ultimately

we need to study the use of such techniques by those engineers. Much can be learned about testing techniques,

however, through studies that focus directly on those techniques themselves. For example, we can measure

and compare the fault-revealing capabilities of test suites created by various testing methodologies [18, 22],

the cost of executing the test suites created by different methodologies [5], or the influence of choices in

test suite design on testing cost-effectiveness [38]. Such studies provide important information on tradeoffs

among techniques, and they can also help us understand the hypotheses that should be tested, and the

controls that are needed, in subsequent studies of humans, which are likely to be more expensive.

Empirical studies of testing techniques, like studies of engineers who perform testing, involve many

challenges and cost-benefits tradeoffs, and this has constrained progress in this area. In general, two classes

of empirical studies of software testing can be considered: controlled experiments and case studies. Controlled

experiments focus on rigorous control of variables in an attempt to preserve internal validity and support

conclusions about causality, but the limitations that result from exerting control can limit the ability to

generalize results [44]. Case studies sacrifice control, and thus, internal validity, but can include a richer

context [51]. Each of these classes of studies can provide insights into software testing techniques,1 and

together they are complementary; in this article, however, our focus is controlled experimentation.

Controlled experimentation with testing techniques depends on numerous software-related artifacts, in-

cluding software systems, test suites, and fault data; for regression testing experimentation, multiple versions

of software systems are also required. Obtaining such artifacts and organizing them in a manner that sup-

ports controlled experimentation is a difficult task. These difficulties are illustrated by the survey of recent

articles reporting experimental results on testing techniques presented in Section 2 of this article. Section

3 further discusses these difficulties in terms of the challenges faced by researchers wishing to perform con-

trolled experimentation, which include the needs to generalize results, ensure replicability, aggregate findings,

isolate factors, and amortize the costs of experimentation.

To help address these challenges, we have been designing and constructing infrastructure to support

controlled experimentation with software testing and regression testing techniques.2 Section 4 of this article

presents this infrastructure, describing its organization and primary components, our plans for making it

available and augmenting it, some examples of the infrastructure being used, and potential threats to validity.

Section 5 concludes by reporting on the impact this infrastructure has had, and can be expected to have, on

further controlled experimentation.

2 A Survey of Studies of Testing

To provide an initial view on the state of the art in empirical studies of software testing, we surveyed

recent research papers following approaches used by Tichy et al. [43] and Zelkowitz et al. [52]. We selected

1A recent study by Juristo et al. [24], which analyzes empirical studies of testing techniques over the past 25 years, underscores
the importance of such studies.

2This work shares similarities with activities promoted by the International Software Engineering Research Network (ISERN).
ISERN, too, seeks to promote experimentation, in part through the sharing of resources; however, ISERN has not to date focused
on controlled experimentation with software testing, or produced infrastructure appropriate to that focus.

Table 1: Research papers involving testing and empirical studies in six major venues, 1994-2003.

Year TSE TOSEM ISSTA3 ICSE FSE ICSM
P T EST P T EST P T EST P T EST P T EST P T EST

2003 74 8 7 7 0 0 - - - 75 7 3 33 4 4 39 4 3
2002 74 8 4 14 2 0 23 11 4 57 4 4 17 0 0 61 9 8
2001 55 6 5 11 4 3 - - - 61 5 3 28 3 3 68 4 3
2000 62 5 2 14 0 0 21 10 2 67 5 2 17 2 2 24 0 0
1999 46 1 0 12 1 0 - - - 58 4 2 29 1 1 36 4 2
1998 73 4 3 12 1 1 16 9 1 39 2 2 22 2 1 32 3 3
1997 50 5 4 12 1 1 - - - 52 4 2 27 3 1 34 2 1
1996 59 8 2 13 5 2 29 13 1 53 5 3 17 2 1 34 1 1
1995 70 4 1 10 0 0 - - - 31 3 1 15 1 1 30 4 1
1994 68 7 1 12 3 1 17 10 1 30 5 2 17 2 0 38 3 1

Total 631 56 29 117 17 8 106 53 9 523 44 24 222 20 14 396 34 23

two journals and four conferences recognized as pre-eminent in software engineering research and known

for including papers on testing and regression testing: IEEE Transactions on Software Engineering (TSE),

ACM Transactions on Software Engineering and Methodology (TOSEM), the ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA), the ACM/IEEE International Conference on Software

Engineering (ICSE), the ACM SIGSOFT Symposium on Foundations of Software Engineering (FSE), and the

IEEE International Conference on Software Maintenance (ICSM). We considered all issues and proceedings

from these venues over the period 1994 to 2003.

Table 1 summarizes the results of our survey with respect to the numbers of full research papers appearing

in each venue per year. Of the 1,995 full research papers contained in the issues and proceedings of the six

venues we considered, we identified 224 papers on topics involving software testing issues such as testing

techniques, test case generation, testing strategies, and test adequacy criteria. We examined these papers,

and determined that 107 reported results of empirical studies. In this determination, we included all papers

that either described their results as “empirical” or clearly evaluated their proposed techniques or methods

through empirical studies.

The table contains three columns of data per venue: P (the total number of papers published in that

year), T (the number of papers about software testing published in that year), and EST (the number of

papers about software testing that contained some type of empirical study). As the table shows, 11.2% (224)

of the papers in the venues considered concern software testing, a relatively large percentage attesting to the

importance of the topic. (This includes papers from ISSTA, which would be expected to have a large testing

focus, but even excluding ISSTA, 9% of the papers in the other venues, that focus on software engineering

generally, concern testing.) Of the testing-related papers, however, only 47.7% (107) report empirical studies.

These data might be considered to be biased because the authors of this article have been responsible for

several of the papers considered in this survey. To assess whether such bias had influenced our results, we

3ISSTA proceedings appear bi-annually.

also considered the same data with those papers eliminated from consideration. In this case, however, the

foregoing percentages become 10.4% (papers concerning software testing), 8.2% (papers concerning software

testing excluding those at ISSTA), 43.4% (empirical studies among testing-related papers), respectively, and

continue to support our conclusions (Table 5 in Appendix A presents full results for this view).

We next analyzed the 107 papers on testing that reported empirical studies, considering the following

categories, which represent factors important to controlled experimentation on testing and regression testing:

• The type of empirical study performed.

• The number of programs used as sources of data.

• The number of versions used as sources of data.

• Whether test suites were utilized.

• Whether fault data was utilized.

• Whether the study involved artifacts provided by or made available to other researchers.

Determining the type of empirical study performed required a degree of subjective judgement, due to vague

descriptions by authors and the absence of clear quantitative measures for differentiating study types. How-

ever, previous work [2, 27, 52] provides guidelines for classifying types of studies, and we used these to

initially determine whether studies should be classified as controlled experiments, case studies or examples.

An additional source for distinguishing controlled experiments from other types of studies was Wohlin et al.’s

criteria [47], and focused primarily on whether the study involved manipulating factors to answer research

questions.

Many studies were relatively easy to classify: if a study utilizes a single program or version and it has no

control factor then it is clearly a case study or an example; if a study utilizes multiple programs and versions

and it has multiple control factors then it is a controlled experiment. However, some studies were difficult

to classify due to a lack of description of experiment design and objects.

The categories listed above (the number of programs and the number of versions empirical studies used,

whether they used tests and faults, and whether they were involved in artifact sharing) are essential elements

to consider in the process of classification of the type of an empirical study, but further consideration of the

experiment design was also required. For example, if a study used all types of artifacts listed in Table 2 but

its experiment design did not manipulate any factors, then we classified it as a case study or an example. On

the other hand, if a study involved a single program but its experiment design manipulated and controlled

factors such as versions or tests, we classified it as an experiment.

Having determined which papers presented controlled experiments, we next considered the remaining

papers again, to classify them as case studies or examples. If the studies utilized only single trivial programs

(i.e. less than a couple of hundred lines of code), then we classified them as examples.

−98 −03 −03
 94 99 94

−98 −03 −03
 94 99 94

−98 −03 −03
 94 99 94

−98 −03 −03
 94 99 94

−98 −03 −03
 94 99 94

−98 −03 −03
 94 99 94

−98 −03 −03
 94 99 94

��
��
��
��

Example Case study Experiment

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

30

40

50

60

70

80

90

10

20

100

TOTAL TOSEM ISSTA ICSMFSEICSETSE

percent

Figure 1: The percentage of empirical studies: example, case study and experiment.

Table 2: Further classification of published empirical studies.

Publication Empirical Example Case Controlled Multiple Multiple Tests Faults Shared
Papers Study Experiment Programs Versions Artifacts

TSE (1999-2003) 18 0 9 9 15 6 16 7 5
TSE (1994-1998) 11 1 9 1 6 2 8 2 1
TSE (1994-2003) 29 1 18 10 21 8 24 9 6

TOSEM (1999-2003) 3 0 0 3 3 3 3 3 2
TOSEM (1994-1998) 5 1 1 3 4 2 5 3 1
TOSEM (1994-2003) 8 1 1 6 7 5 8 6 3
ISSTA (1999-2003) 6 0 4 2 5 2 6 1 1
ISSTA (1994-1998) 3 0 2 1 3 1 3 1 0
ISSTA (1994-2003) 9 0 6 3 8 3 9 2 1
ICSE (1999-2003) 14 1 6 7 9 6 14 8 6
ICSE (1994-1998) 10 0 7 3 6 7 10 5 2
ICSE (1994-2003) 24 1 13 10 15 13 24 13 8
FSE (1999-2003) 10 2 6 2 5 2 8 1 0
FSE (1994-1998) 4 0 2 2 3 2 4 2 0
FSE (1994-2003) 14 2 8 4 8 4 12 3 0

ICSM (1999-2003) 16 2 11 3 10 11 10 3 5
ICSM (1994-1998) 7 3 3 1 3 3 2 2 1
ICSM (1994-2003) 23 5 14 4 13 14 12 5 6

Total (1999-2003) 67 5 36 26 47 30 57 23 19
Total (1994-1998) 40 5 24 11 25 17 32 15 5
Total (1994-2003) 107 10 60 37 72 47 89 38 24

Figure 1 summarizes the results of our analysis. The figure reports the data for each venue in terms of

three time periods: 1994-1998, 1999-2003, and 1994-2003. Across all venues over the ten year period, 34.5%

of the studies presented were controlled experiments and 56% were case studies. Separation of this data into

time periods suggests that trends are changing: 27.5% of the studies in the first five years (1994-1998) were

controlled experiments, compared to 38.8% in the second five years (1999-2003). This trend occurs across all

venues other than ISSTA and FSE, and it is particularly strong for TSE (9% vs. 50%). The results of this

analysis, too, remain stable when papers involving the authors of this article are excluded: in that case, over

the ten year period, 23% of the studies were controlled experiments and 65% were case studies; 17.6% of

the studies in the first five-year period were controlled experiments compared to 27% in the second five-year

period; and the increasing trend is visible across all venues other than ISSTA and FSE, remaining strongest

for TSE (0% to 40%) (see Table 6 in Appendix A for full results for this case).

Table 2 reports these same numbers together with additional data listed in the following columns: multiple

programs, multiple versions, tests, faults, and shared artifacts. As the table shows, 32.7% of the studies utilize

data from only one program (although this is not necessarily problematic for case studies). Also, only 44%

of the studies utilize multiple versions and only 35.5% utilize fault data. Finally, the table shows that of the

107 studies, only 22.4% involved artifact sharing. This table exhibits an increasing trend in sharing from

12.5% in the early time period to 28% in the later period. Excluding papers by the authors of this article,

the first three percentages become 36% (studies utilizing one program), 37.2% (studies utilizing multiple

versions), and 23.2% (studies utilizing fault data), respectively, with 9.3% of the studies involving sharing,

and the increasing trend being from 3% to 13.4%, continuing to support our conclusions (see Table 6 in

Appendix A).

Further investigation of this data is revealing. Of the 24 papers in which artifacts were shared among

researchers, 21 use one or both of a set of programs known as the “Siemens programs”, or a somewhat

larger program known as “space”. (Four of these 21 papers also use one or two other large programs,

but these programs have not to date been made available to other researchers as shared artifacts.) The

Siemens programs, originally introduced to the research community by Hutchins et al. [22] and subsequently

augmented, reorganized, and made available as shareable infrastructure by an author of this article, consist

of seven C programs each of no more than 1000 lines of code, 132 seeded faults for those programs, and

several sets of test suites satisfying various test adequacy criteria. Space, appearing initially in papers by

other researchers [45, 48] and also processed and made available as shareable infrastructure by an author

of this article, is a single application of nearly 10,000 lines of code, provided with various test suites and

35 actual faults. In the cases in which multiple “versions” of software systems are used in studies involving

these programs, these versions differ only in terms of faults, rather than in terms of a set of changes of which

some have caused faults; ignoring these cases, only four exist in which actual, realistic multiple versions of

programs are utilized. This is just a starting point for infrastructure sharing; as we describe later in Section

3, the use of the Siemens programs and space poses several threats to validity.

3 Challenges for Experimentation

Researchers attempting to conduct controlled experiments examining the application of testing techniques

to artifacts face several challenges. The survey of the literature just summarized provides evidence of the

effects of these challenges: in particular in the small number of controlled experiments, the small percentage

of studies utilizing multiple programs, versions, and faults data, and the limited artifact sharing evident.

The survey also suggests, however, that researchers are becoming increasingly willing to conduct controlled

experiments, and are increasing the extent to which they utilize shared artifacts.

These tendencies are related: utilizing shared artifacts is likely to facilitate controlled experimentation.

The Siemens programs and space, in spite of their limitations, have facilitated a number of controlled

experiments that might not otherwise have been possible. This argues for the utility of making additional

infrastructure available to other researchers, as is our goal.

Before proceeding further, however, it is worthwhile to identify the challenges faced by researchers per-

forming experimentation on testing techniques in the presence of limited infrastructure. Identifying such

challenges provides insights into the limited progress in this area that goes beyond the availability of ar-

tifacts. Furthermore, identifying these challenges helps us define the infrastructure requirements for such

experiments, and helps us shape the design of an experiment infrastructure.

Challenge 1: Supporting replicability across experiments.

A scientific finding is not trusted unless it can be independently replicated. When performing a replication,

researchers duplicate the experimental design of an experiment on a different sample to increase the con-

fidence in the findings [47] or on an extended hypothesis to evaluate additional variables [3]. Supporting

replicability for controlled experiments requires establishment of control on experimental factors and context;

this is increasingly difficult to achieve as the units of analysis and context become more complex. When

performing controlled experimentation with software testing techniques, several replicability challenges exist.

First, artifacts utilized by researchers are rarely homogeneous. For example, programs may belong to

different domains and have different complexities and sizes, versions may exhibit different rates of evolution,

processes employed to create programs and versions may vary, and faults available for the study of fault

detection may vary in type and magnitude.

Second, artifacts are provided in widely varying levels of detail. For example, programs freely available

through the open source initiative are often missing formal documentation or rigorous test suites. On the

other hand, confidentiality agreements often constrain the industry data that can be utilized in published

experiments, especially data related to faults and failures.

Third, experiment design and process details are often not standardized or reported in sufficient detail.

For example, different types of oracles may be used to evaluate technique effectiveness, different, non-

comparable tools may be used to capture coverage data, and when fault seeding is employed it may not be

clear who performed the activity and what process they followed.

Challenge 2: Supporting aggregation of findings.

Individual experiments may produce interesting findings, but can claim only limited validity under different

contexts. In contrast, a family of experiments following a similar operational framework can enable the

aggregation of findings, leading to generalization of results and further theory development.

Opportunities for aggregation are highly correlated with the replicability of an experiment (Challenge

1); that is, a highly replicable experiment is likely to provide detail sufficient to determine whether results

across experiments can be aggregated. (This reveals just one instance in which the relationship between

challenges is not orthogonal, and in which providing support to address one challenge may impact others.)

Still, even high levels of replicability cannot guarantee correct aggregation of findings unless there is a

systematic capture of experimental context [36]. Such systematic capture typically does not occur in the

domain of testing experimentation. For example, versions utilized in experiments to evaluate regression

testing techniques may represent minor internal versions or major external releases; these two scenarios

clearly involve very distinct levels of validation. Although capturing complete context is often infeasible, the

challenge is to provide enough support so that the evidence obtained across experiments can be leveraged.

Challenge 3: Reducing the cost of controlled experiments.

Controlled experimentation is expensive, and there are several strategies available for reducing this expense.

For example, experiment design and sampling processes can reduce the number of participants required for

a study of engineer behavior, thereby reducing data collection costs. Even with such reductions, obtaining

and preparing participants for experimentation is costly, and that cost varies with the domain of study,

the hypotheses being evaluated, and the applicability of multiple and repeated treatments on the same

participants.

Controlled experimentation in which testing techniques are applied to artifacts does not require human

participants, it requires objects such as programs, versions, tests, and faults. This is advantageous because

artifacts are more likely to be reusable across experiments, and multiple treatments can be validly applied

across all artifacts at no cost to validity. Still, artifact reuse is often jeopardized due to several factors.

First, artifact organization is not standardized. For example, different programs may be presented in

different directory structures, with different build processes, fault information, and naming conventions.

Second, artifacts are incomplete. For example, open source systems seldom provide comprehensive test

suites, and industrial systems are often “sanitized” to remove information on faults and their corrections.

Third, artifacts require manual handling. For example, build processes may require software engineers

to configure various files, and test suites may require a tester to control execution and audit results.

Challenge 4: Obtaining sample representativeness.

Sampling is the process of selecting a subset of a population with the intent of making statements about the

entire population. The degree of representativeness of the sample is important because it directly impacts

the applicability of the conclusions to the rest of the population. However, representativeness needs to be

balanced with considerations for the homogeneity of the sampled artifacts in order to facilitate replication as

well. Within the software testing domain, we have found two common problems for sample representativeness.

First, sample size is limited. Since preparing an artifact is expensive, experiments often use small numbers

of programs, versions, and faults. Further, researchers trying to reduce costs (Challenge 3) do not prepare

artifacts for repeated experimentation (e.g., test suite execution is not automated). Lack of preparation for

reuse limits the growth of the sample size even when the same researchers perform similar studies.

Second, samples are biased. Even when a large number of programs are collected they usually belong

to a set of similar programs. For example, as described in Section 2, many researchers have employed the

Siemens programs in controlled experiments with testing. This set of objects includes seven programs with

faults, versions, processing scripts, and automated test suites. The Siemens programs, however, each involve

fewer than 1000 lines of code. Other sources of sample bias include the types of faults seeded or considered,

processes used for test suite creation, and code changes considered.

Challenge 5: Isolating the effects of individual factors.

Understanding causality relationships between factors lies at the core of experimentation. Blocking and

manipulating the effects of a factor increases the power of an experiment to explain causality. Within the

testing domain, we have identified two major problems for controlling and isolating individual effects.

First, artifacts may not offer the same opportunities for manipulation. For example, programs with

multiple faults offer opportunities for analyzing faults individually or in groups, which can affect the per-

formance of testing techniques as it introduces masking effects. Another example involves whether or not

automated and partitionable test suites are available; these may offer opportunities for isolating test case

size as a factor.

Second, artifacts may make it difficult to decouple factors. For example, it is often not clear what

program changes in a given version occurred in response to a fault, an enhancement, or both. Furthermore,

it is not clear at what point the fault was introduced in the first place. As a result, the assessment of testing

techniques designed to increase the detection of regression faults may be biased.

4 Infrastructure

We have described what we believe are the primary challenges faced by researchers wishing to perform

controlled experimentation with testing techniques, and that have limited progress in this area. Some of

these challenges involve issues for experiment design, and guidelines such as those provided by Kitchenham

et al. [26] address those issues. Other challenges relate to the process of conducting families of experiments

with which to incrementally build knowledge, and lessons such as those presented by Basili et al. [3] could

be valuable in addressing these. All of these challenges, however, can be traced at least partly (and some

primarily) to issues involving infrastructure.

To address these challenges, we have been designing and constructing infrastructure to support controlled

experimentation with software testing and regression testing techniques. Our infrastructure includes, first

and foremost, artifacts (programs, versions, test cases, faults, and scripts) that enable researchers to perform

controlled experimentation and replications.

We are staging our artifact collection and construction efforts along two dimensions, breadth and depth,

where breadth involves adding new object systems to the infrastructure, and depth involves adding new

attributes to the systems currently contained in the infrastructure.

Where breadth is concerned, we focused initially on systems prepared in C; however, given the increasing

interest on the part of the testing community in object-oriented systems and Java, we have recently shifted

our attention to Java systems.

Where depth is concerned, we have been incrementally expanding our infrastructure to accommodate

additional attributes. Ultimately, we expect to continually extend these attributes based on the input from

other researchers who utilize our infrastructure. Our current set of attributes, however, can be broadly

categorized as follows:

• System attributes: source code, and (as available) user documentation. We also store all necessary

system build materials, together with information on configurations supported, and compilers and

operating systems on which we have built and executed the system.

• Version attributes: system releases created in the course of system enhancement and maintenance. We

store versions of source code, versions of documentation, and all associated system attributes for those

versions.

• Test attributes: pools of input data, and test suites of various types. We store all harnesses, stubs,

drivers, test classes, oracles, and materials necessary to execute test cases.

• Fault attributes: fault data about the system and versions, and information on fault-revealing inputs.

• Execution attributes: operational profiles of the system’s execution, expected runtimes for tests or

analyses, results of analysis runs, and data on test coverage obtained.

Beyond these artifacts, our infrastructure also includes documentation on the processes used to select,

organize, and further set up artifacts, and supporting tools that help with these processes. Together with

our plans for sharing and extending the infrastructure, these objects, documents, tools, and processes help

address the challenges described in the preceding section as summarized in Table 3.

Table 3: Challenges and Infrastructure.

Infrastructure attributes
Artifact Docs, Share,

Challenges Selection Organization Setup Tools Extend
Support Replicability X X X X X
Support Aggregation X X X X
Reduce Cost X X X X X
Representativeness X X
Isolate Effects X X

The following subsections provide further details on each of these aspects of our infrastructure. Further

subsections then describe examples of the use of the infrastructure that have occurred to date, and threats

to validity to consider with respect to the use of the infrastructure.

4.1 Object Selection, Organization, and Setup

Our infrastructure provides guidelines for object selection, organization, and setup processes. The selection

and setup guidelines assist in the construction of a sample of complete artifacts. The organization guidelines

provide a consistent context for all artifacts, facilitating the development of generic experiment tools, and

reducing the experimentation overhead for researchers.

4.1.1 Object selection

Object selection guidelines direct persons assembling infrastructure in the task of selecting suitable objects,

and are provided through a set of on-line instructions that include artifact selection requirements. Thus far,

we have specified two levels of required qualities for objects: 1st-tier required-qualities (minimum lines of

code required, source freely available, five or more versions available) and 2nd-tier required-qualities (runs

on platforms we utilize, can be built from source, allows automation of test input application and output

validation). When assembling objects, we first identify objects that meet first-tier requirements, which can be

determined relatively easily, and then we prioritize these, and for each, investigate second-tier requirements.

Part of the object selection task involves ensuring that programs and their versions can be built and

executed automatically. Because experimentation requires the ability to repeatedly execute and validate

large numbers of test cases, automatic execution and validation must be possible for candidate programs.

Thus, our infrastructure currently excludes programs that require graphical input/output that cannot easily

be automatically executed or validated. At present we also require programs that execute, or through edits

can be made to execute, deterministically; this too is a requirement for automated validation, and implies

that programs involving concurrency and heavy thread use might not be directly suitable.

Our infrastructure now consists of 17 C and seven Java programs, as shown in Table 4. The first eight

Table 4: Objects in our Infrastructure.

Objects Size No. of Versions No. of Tests No. of Faults Release Status
tcas 173 1 1608 41 released
schedule2 374 1 2710 10 released
schedule 412 1 2650 9 released
replace 564 1 5542 32 released
tot info 565 1 1052 23 released
print tokens2 570 1 4115 10 released
print tokens 726 1 4130 7 released
space 9564 1 13585 35 released

gzip 6582 6 217 15 released
sed 11148 5 1293 40 released
flex 15297 6 567 81 released
grep 15633 6 809 75 released
make 27879 5 1043 17 released
bash 48171 10 1168 69 near release
emp-server 64396 10 1985 90 near release
pine 156037 4 288 24 near release
vim 224751 9 975 7 near release

nanoxml 7646 (24) 6 217 33 released
siena 6035 (26) 8 567 3 released
galileo 15200 (79) 16 1537 0 near release
ant 179827 (627) 9 150 21 released
xml-security 41404 (143) 4 14 6 released
jmeter 79516 (389) 6 28 9 released
jtopas 19341 (50) 4 11 5 released

programs listed are the Siemens programs and space, which constituted our first set of experiment objects;

the remaining programs include nine larger C programs and seven Java programs, selected via the foregoing

process. The other columns are as follows:

• The “Size” column presents the total number of lines of code, including comments, present in each

program, and illustrates our attempts to incorporate progressively larger programs. For Java programs,

the additional parenthetical number denotes the number of classes in the program.

• The “No. of Versions” column lists how many versions each program has. The Siemens programs and

space are available only in single versions (with multiple faults), a serious limitation, although the

availability of multiple faults has been leveraged, in experiments, to create various alternative versions

containing one or more faults. Our more recently collected objects, however, are available in multiple,

sequential releases (corresponding to actual field releases of the systems).

• The “No. of Tests” column lists the number of test cases available for the program (for multi-version

programs, this is the number available for the final version). Each program has one or more types of test

scripts source versions.alt inputs testplans

testplans.alt traces.alt

outputs

outputs.alt

traces info

object

Figure 2: Object directory structure (top level).

cases and one or more types of test suites (described below). Two of the Java programs (nanoxml and

siena) are also provided with test drivers that invoke classes under test. The last four Java programs

(ant, xml-security, jmeter, and jtopas) have JUnit test suites. The test suites were supplied with each

Java program from the open source software hosts.

• The “No. of Faults” column indicates the total number of faults available for each of the programs; for

multi-version programs we list the sum of faults available across all versions.

• The “Release Status” column indicates the current release status of each object as one of “released”,

or “near release”. The Siemens programs and space, as detailed above, have been provided to and

used by many other researchers, so we categorize them as released. Bash, emp-server, vim, pine, and

galileo are undergoing final formatting and testing and thus are listed as “near release”. The rest of

the programs listed are now available in our infrastructure repository, and we also categorize them as

released.

Our object selection process helps provide consistency in the preparation of artifacts, supporting replica-

bility. The same process also reduces costs by discarding earlier the artifacts that are not likely to meet the

experimental requirements. Last, the selection mechanism lets us adjust our sampling process to facilitate

the collection of a representative set of artifacts.

4.1.2 Object organization

We organize objects and associated artifacts into a directory structure that supports experimentation. Each

object we create has its own “object” directory, as shown in Figure 2. An object directory is organized into

specific subdirectories (which in turn may contain subdirectories), as follows.

• The scripts directory is the “staging platform” from which experiments are run; it may also contain

saved scripts that perform object-related tasks.

• The source directory is a working directory in which, during experiments, the program version being

worked with is temporarily placed.

• The versions.alt directory contains various variants of the source for building program versions. Vari-

ants are alternative copies of the object, created when the initial copy will not function for some

particular purpose, but when a somewhat modified alternative will. For example:

– The basic variant, which every object has, is contained in a subdirectory of versions.alt called

versions.orig, which contains subdirectories v0, v1, . . ., vk, where v0 is the earliest version, and

the other vj contain the next sequential versions in turn.

– A second variant provides faults; for this purpose a directory that may exist is versions.seeded,

which also contains subdirectories v1, v2, . . ., vk. In this directory each vk area contains the .c

file and .h files (or .java files) needed to build the version with some number of seeded faults that

are inserted and a file FaultSeeds.h which contains all declarations needed to define all the faults.

– A third general class of variants is created to handle cases in which some prototype analysis tool is

not robust enough to process a particular syntactic construct; in such cases a variant of a program

may be created in which that construct is replaced by a semantically equivalent alternative.

In the case of Java programs, if a program consists of applications and components, then the versions

directory itself is subdivided into multiple subdirectories for these applications and components. Each

subdirectory contains variants such as versions.orig and versions.seeded subdirectories.

• The inputs directory contains files containing inputs, or directories of inputs used by various test cases.

• The testplans.alt directory contains subdirectories v0, v1, . . ., vk, each of which contains testing infor-

mation for a system version; this information typically includes a “universe” file containing a pool of

test cases, and various test suites drawn from that pool. We organize the vj subdirectories into four

types of files and subdirectories:

– General files. These are .universe, .tsl, and .frame files. A universe file (.universe extension) is

a file listing test cases. An automated test-script generation program transforms universe files

into various types of scripts that can be used to automatically execute the test cases or gather

traces for them. TSL and frame files facilitate the use of black-box test cases designed using

the category-partition method (described further in Section 4.1.3). TSL files (.tsl extension) are

named vk.tsl (k=0,1,2...) for different versions. The sets of test frames generated from .tsl files

(.frame extension) are named vk.frame, in reference to their corresponding TSL (vk.tsl) files.

– Link files. These are files that link to previous versions of general files. These links allow the

inheriting of testing materials from a prior version, preventing multiple copies.

– Testsuites subdirectories. Some objects have directories containing various test suites built from

the universe files. For example, the Siemens programs each have test suites containing randomly

selected test cases from the universe file, test suites that are statement-coverage adequate, and

test suites that are both statement-coverage adequate and minimal in size.

– The testscripts subdirectory. If the test cases require startup or exit activities prior to or after

execution, scripts encoding these are stored in a testscripts subdirectory.

• The traces.alt directory contains subdirectories v0, v1, . . ., vk, each holding trace information for a

version of the system, in the form of individual test traces or summaries of coverage information.

• The outputs.alt directory permanently stores the outputs of test runs, which is especially useful when

experimenting with regression testing where outputs are compared against previous outputs.

• The testplans, outputs, and traces directories serve as “staging platforms” during specific experiments.

Data from a specific “testplans.alt” subdirectory is placed into the testplans directory prior to experi-

mentation; data from outputs and traces directories is placed into subdirectories in their corresponding

“.alt” directories following experimentation.

• The info directory contains additional information about the program, especially information gathered

by analysis tools and worth saving for experiments, such as fault-matrix information (which describe

the faults that various test cases reveal).

• Java objects may contain a testdrivers directory that contains test drivers that invoke the application

or its components.

Our object organization supports consistent experimentation conditions and environments, allowing us

to write generic tools for experimentation that know where to find things, and that function across all of our

objects (or a significant subset, such as those written in Java). This in turn helps reduce the costs of executing

and replicating controlled experiments, and aggregating results across experiments. The use of this structure

can potentially limit external validity by restricting the types of objects that can be accommodated, and

the transformation of objects to fit the infrastructure can create some internal validity threats. However,

the continued use of this structure and the generic tools it supports ultimately reduces a large class of

potential threats to internal validity arising from errors in automation, by facilitating cross-checks on tools,

and leveraging previous tool validation efforts. The structure also accommodates objects with various types

and classes of artifacts, such as multiple versions, fault types, and test suites, enabling us to control for and

isolate individual effects in conducting experimentation.

4.1.3 Object setup

Test suites

Systems we have selected for our repository have only occasionally arrived equipped with anything more than

rudimentary test suites. When suites are provided, we incorporate them into our infrastructure because they

are useful for case studies. For controlled experiments, however, we prefer to have test suites created by

uniform processes. Such test suites can also be created in ways that render them partitionable, facilitating

studies that isolate factors such as test case size, as mentioned in Section 3 (Challenge 5).

To construct test suites that represent those that might be constructed in practice for particular programs,

we have relied primarily on two general processes, following the approach used by Hutchins et al. [22] in

their initial construction of the Siemens programs.

The first process involves specification-based testing using the category-partition method, based on a

test specification language, TSL, described in [35]. A TSL specification is written for an initial version of

an object, based on its documentation, by persons who have become familiar with that documentation and

the functionality of the object. Subsequent versions of the object inherit this specification, or most of it,

and may need additional test cases to exercise new functionality, which can be encoded in an additional

specification added to that version, or in a refined TSL specification. TSL specifications are processed by

a tool, provided with our infrastructure, into test frames, which describe the requirements for specific test

cases. Each test case is created and encoded in proper places within the object directory.

The second test process we have used involves coverage-based testing, in which we instrument the object

program, measure the code coverage achieved by specification-based test cases, and then create test cases

that exercise code not covered by them.

Employing these processes using multiple testers helps reduce threats to validity involving specific test

cases that are created. Creating larger pools of test cases in this fashion and sampling them to obtain various

test suites, such as test suites that achieve branch coverage or test suites of specific sizes, provides further

assistance with generalization. We store such suites with the objects along with their pools of test cases.

In addition to two types of test suites just described, for our Java objects, we are also beginning to

provide JUnit test suites (and have done so for ant, xml-security, jmeter, and jtopas). JUnit [23] is a Java

testing framework that allows automation of tests for classes, and that is increasingly being used with Java

systems. As noted in our description of Table 4, the JUnit test suites have been supplied with each Java

program from its open source software host.

At present, not all of our objects possess equivalent types of test cases and test suites, but one goal in

extending our infrastructure is to ensure that specific types of test cases and test suites are available across

all objects on which they are applicable, to aid with the aggregation of findings. A further goal, of course,

is to provide multiple instances and types of tests suites per object, a goal that has been achieved for the

Siemens programs and space allowing the completion of several comparative studies. Meeting this goal will

be further facilitated through sharing of the infrastructure and collaboration with other researchers.

Faults

For studies of fault detection, we have provided processes for two cases: the case in which naturally occurring

faults can be identified, and the case in which faults must be seeded. Either possibility presents advantages

and disadvantages: naturally occurring faults are costly to locate and typically cannot be found in large

numbers, but they represent actual events. Seeded faults can be costly to place, but can be provided in

larger numbers, allowing more data to be gathered than otherwise possible, but with less external validity.

To help with the process for hand-seeding faults, and increase the potential external validity of results

obtained on these faults, we insert faults by following fault localization guidelines such as the one shown

in Figure 3 (excerpted from our infrastructure documentation). These guidelines provide direction on fault

placement. We also provide fault classifications based on published fault data (such as the simple one present

in the figure), so that faults will correspond, to the extent possible, to faults found in practice. To further

reduce the potential for bias, fault seeding is performed independently of experimentation, by multiple

persons with sufficient programming experience, and who do not possess knowledge of specific experiment

plans.

Another motivation for seeding faults occurs when experimentation concerned with regression testing is

the goal. For regression testing, we wish to investigate errors caused by code change (regression faults).

With the assistance of a differencing tool, fault seeders locate code changes, and place faults within those.

Although we have not yet incorporated it into our processes, fault seeding can also be performed using

program mutation [8, 32]. Program mutation can produce large numbers of faults at low cost, and recent

studies [1, 12] indicate that mutation faults can in fact be representative of real faults. If these results

generalize, then we can extend the validity of experimental results by using mutation, and the large number of

faults that result can yield data sets on which statistically significant conclusions can be obtained, facilitating

the understanding of causality. Such studies can then be coupled with studies using other fault types to

address external validity concerns.

Similarly, in the future, other researchers might be interested in other types of seeded faults, such as

integration faults or faults related to side-effects. By defining appropriate mutation operators or tables of

fault types, these researchers can simulate these fault types, allowing studies of their detection. For example,

Delamaro et al. [11] have assessed the adequacy of tests for integration testing by mutating interfaces, in

ways that simulate involve integration faults. Faults of these types can then also be incorporated into our

infrastructure.

All of the objects in our infrastructure that are listed in Table 4 except space contain seeded faults; space

contains 35 real faults that were identified during the testing and operational use of the program.

Figure 3: Fault localization guidelines for C programs.

1. When the goal is to seed regression faults in versions, use a differencing tool to determine where the
changes occurred. If the changes between versions are large, the tool may carry differences forward,
even when the code is identical. Verify the differences independently and use diff only as a guide.

2. The fault seeding process needs to reflect real types of faults. A simple fault classification scheme can
be helpful for thinking about different types of faults:

(a) Faults associated with variables: definition of variable, redefinition of variable, deletion of variable,
change value of variable in existing assignment statement.

(b) Faults associated with control flow: addition of new block of code, deletion of path, removal
of block, redefinition of execution condition, change in order of execution, new call to external
function, removal of call to external function, addition of function, removal of function.

(c) Faults associated with memory allocation: allocated memory not freed or not initialized, or erro-
neous use of pointers.

3. When creating regression faults, assume that the programmer who made the modification inserted
the fault, and simulate this behavior by inserting artificial faults into the modified code. There is no
restriction on the size or type of fault at this stage. The only requirement is that the changed program
can still be compiled and executed.

4. Since more than two programmers perform the seeding process independently, some faults may be
repeated. Repeated faults must be removed after all faults have been inserted. Although the pro-
grammers could work together to avoid overlapping, this would hurt the validity and credibility of the
process. The modified code from multiple programmers needs to be merged. This should be a simple
and short (maximum 10 modifications) cut/paste process but needs to be done carefully. Make sure
you compile, link and test your program.

5. Next, run the test suite on each version to perform further filtering. Filter out two types of faults:

(a) faults that are exposed by more than 20% of the tests, because if they are introduced, they are
likely to be detected during unit testing.

(b) faults that are not detected by any tests.

6. Keep only those faults that have not been filtered out. Test the program and then move on to the next
version.

4.2 Documentation and Supporting Tools

Documentation and guidelines supplied with our infrastructure provide detailed procedures for object selec-

tion and organization, test generation, fault localization, tool usage, and current object descriptions. The

following materials are available:

• C (Java) Object Handbook: these documents describes the steps we follow to set up a typical, less

than 30K LOC C program (or a typical 5-15K LOC Java program) as an experiment object. They are

written primarily as sets of instructions to persons who have or wish to set up these objects, but they

are also useful as an aid to understanding the object setup, and choices made in that setup.

• C (Java) Object Download: these web pages provide access to the most recent releases of each of our

C (Java) objects, in tarred, gzipped directories.

• C (Java) Object Biographies: these web pages provide information about each of the C (Java) objects

we currently make available, including what they are and how they were prepared.

• Tools: this web page describes and provides download capabilities for the tools. Short descriptions for

supporting tools are as follows:

– tsl: this program generates test frames based on a TSL specification.

– javamts/mts: these programs generate test scripts of various forms and functionalities from uni-

verse files.

– gen-fault-matrix: this module contains various scripts needed to generate a fault matrix file (a

file relating faults to the test cases that expose them) for an object.

– adiff: this tool produces a list of functions changed across two versions of a C object.

• Reporting Problems: this web page provides instructions regarding how to report problems in the

infrastructure.

As suggested in Section 3, guidelines such as those we provide support sharing (and thus cost reduction),

as well as facilitating replication and aggregation across experiments. Documentation and guidelines are

thus as important as objects and associated artifacts.

Depending on the research questions being investigated, experiment designs and processes used for testing

experiments can be complex and require multiple executions, so automation is important. Our infrastructure

provides a set of testing tools that build scripts that execute tests automatically, gather traces for tests,

generate test frames based on TSL specifications, and generate fault matrices for objects. These tools

make experiments simpler to execute, and reduce the possibility of human errors such as typing mistakes,

supporting replicability as well. The automated testing tools function across all objects, given the uniform

directory structure for objects; thus, we can reuse these tools on new objects as they are completed, reducing

the costs of preparing such objects.

4.3 Sharing and Extending the Infrastructure

Our standard object organization and tool support help make our infrastructure extensible; objects that

meet our requirements can be assembled using the required formats and tools. This is still an expensive

process, but in the long run such extension will help us achieve sample representativeness, and help with

problems in replicability and aggregation as discussed in Section 3.

In our initial infrastructure construction, we have focused on gathering objects and artifacts for regression

testing study, and on facilitating this with faults, multiple versions and tests. Such materials can also be used,

however, for experimentation with testing techniques generally, and with other program analysis techniques.

(Section 5 discusses cases in which this is already occurring.) Still, we intend that our infrastructure be

extended through addition of objects with other types of associated artifacts, such as may be useful for

different types of controlled experiments. For example, one of our Java objects, nanoxml, is provided with

UML statechart diagrams, and this would facilitate experimentation with UML-based testing techniques.

Extending our infrastructure can be accomplished in two ways: by our research group, and by collab-

oration with other research groups. To date we have proceeded primarily through the first approach, but

the second has many benefits. First, it is cost effective, mutually leveraging the efforts of others. Second,

through this approach we can achieve greater diversity among objects and associated artifacts, which will

be important in helping to increase sample size and achieve representativeness. Third, sharing implies more

researchers inspecting the artifact setup, tools, and documentation, reducing threats to internal validity.

Ultimately, collaboration in constructing and sharing infrastructure can help us contribute to the growth in

the ability of researchers to perform controlled experimentation on testing in general.

As mentioned earlier, we have been making our Siemens and space infrastructure available, on request,

for several years. We have recently created web pages that provide this infrastructure, together with all

more recently created infrastructure described in this article, and all of the programs listed in Table 4 with

the exception of those listed as “near release”. This web page resides at http://esquared.unl.edu/sir/, and

provides a password-protected portal to any researchers who request access to the infrastructure, with the

proviso that they agree to report to us any experiences that will help us to improve the infrastructure.

4.4 Examples of the Infrastructure Being Used

In this section we present three examples of our infrastructure being used by other researchers and ourselves.

The first two cases describe examples involving the C programs and their artifacts, and the third case is an

example of the use of Java programs and their artifacts.

In presenting each example we address the following questions:

• What problem did the researchers wish to address?

• What types of artifacts were needed to investigate this problem?

• What did the researchers take from our infrastructure?

• What did the researchers learn from their study?

Example 1: Improving test suites via operational abstraction.

Harder et al. [19] present the operational difference technique for improving test suites using augmentation,

minimization, and generation processes. The authors evaluated improved test suites by comparing them

with other techniques in terms of the fault detection ability and code-coverage of the test suites.

To do this, the authors required objects that have test suites and faults. They selected eight such C

objects from our infrastructure: the Siemens programs and space. They describe why they selected these

programs for their experiment: the programs are well-understood from previous research, and no other

programs that have human-generated tests and faults were immediately available.

Through their experiment the authors discovered that their technique produced test suites that were

smaller, and slightly more effective at fault detection, than branch coverage suites.

Example 2: Is mutation an appropriate tool for testing experiments?

Andrews et al. [1] investigate whether automatically generated faults (mutants) can be used to assess the

fault detection effectiveness of testing techniques.

To answer their research question, they compared the fault detection ability of test suites on hand-seeded,

automatically-generated (mutation), and real-world faults.

For their experiment, they required objects that had test suites and faults. Similar to Example 1, they

also used eight C programs: the Siemens programs and space. Since the Siemens programs have seeded

faults and space contains real faults, the only additional artifacts they needed to obtain were automatically-

generated faults (mutants). The authors generated mutants over the C programs using a mutation generation

tool. The reason the authors chose the programs was that they considered the associated artifacts to be

mature due to their extensive usage in experiments.

The authors compared the adequacy ratio of test suites in terms of mutants and faults. Their analysis

suggests that mutants can provide a good indication of the fault detection ability of a test suite; generated

mutants were similar to the real faults in terms of fault detection, but different from the hand-seeded faults.

Example 3: Empirical studies of test case prioritization in a JUnit testing environment.

Do et al. [13] investigate the effectiveness of prioritization techniques on Java programs tested using JUnit

test cases. They measured the effectiveness of prioritization techniques using the prioritized test suite’s rate

of fault detection.

To answer their research questions, the authors required Java programs that provided JUnit test suites

and faults. The four Java programs (ant, jmeter, xml-security, and jtopas) from our infrastructure have the

required JUnit test cases and seeded faults.

Through their experiment, the authors found that test case prioritization can significantly improve the

rate of fault detection of JUnit test suites, but also reveals differences with respect to previous studies that

can be related to the language and testing paradigm.

4.5 Threats to Validity: Things to Keep in Mind When Using the Infrastructure

As mentioned in Section 4.3, sharing of our infrastructure can bring many benefits to both ourselves and other

researchers, but may introduce other problems, such as that users of the infrastructure might misinterpret

some artifacts or object organization mechanism. This, in turn, can generate experiments with misleading

findings. We believe that our description of the infrastructure organization and its artifacts is detailed enough

to limit misuse and misinterpretation, and in practice many researchers are using the infrastructure without

major problems.4 Using the infrastructure also demands users’ caution; they must read documentation and

follow directions carefully.

Extending the infrastructure by collaborating with other researchers also introduces potential threats to

validity (internal and construct). First, to extend the infrastructure, we need to motivate others to contribute.

It is not easy to convince people to do this because it requires extra effort to adjust their artifacts to our

standard format and some researchers may not be willing to share their artifacts. We expect, however, that

our direct collaborators will contribute to the infrastructure in the next phase of its expansion, and they,

in turn, will bring more collaborators who can contribute to the infrastructure. (In Section 5, as a topic

of future work, we propose possible mechanisms for encouraging researchers who use our infrastructure to

contribute additions to it.) Second, if people contribute their artifacts, then we need a way to check the

quality of the artifacts contributed. We expect the primary responsibility for quality to lie with contributors,

but again by sharing contributed artifacts, we can reduce this problem since researchers will inspect artifacts

as they use them.

Another potential problem with our infrastructure involves threats to the external validity of experiments

performed using them, since the artifacts we provide have not been chosen by random selection. The

infrastructure we are providing is not intended to be a benchmark; rather, we are creating a resource to

support experimentation. We hope, however, to increase the external validity of experimentation using our

infrastructure over time by providing a larger pool of artifacts through continuous support from our research

group and collaboration with other researchers.

4There has been one reported problem reported to us regarding the use of the infrastructure to date, but it turned out that
in this case, the user attempted to use the artifacts without reading the documentation carefully.

5 Conclusion

We have presented our infrastructure for supporting controlled experimentation with testing techniques, and

we have described several of the ways in which it can potentially help address many of the challenges faced

by researchers wishing to conduct controlled experiments on testing. We close this article by first providing

additional discussion of the impact, both demonstrated and potential, of our infrastructure to date, and then

by discussing anticipated future work.

Section 4.4 provided three specific examples of the use of our infrastructure. Here, we remark more

generally on the impact of our infrastructure to date. Many of the infrastructure objects described in the

previous section are only now being made available to other researchers. The Siemens programs and space,

however, in the format extended and organized by ourselves, have been available to other researchers since

1999, and have seen widespread use. In addition to our own papers describing experimentation using these

artifacts (over twenty such papers have appeared, see http://www.cse.unl.edu/̃ grother) we have identified

eight other papers not involving creators of this initial infrastructure that describe controlled experiments

involving testing techniques using the Siemens programs and/or space [1, 7, 10, 19, 25, 31, 33, 50]. The

artifacts have also been used in [17] for a study of dynamic invariant detection (attesting to the feasibility

of using the infrastructure in areas beyond those limited to testing).

In our review of the literature, we have found no similar usage of other artifacts for controlled experi-

mentation in software testing. On the one hand, the willingness of other researchers to use the Siemens and

space artifacts attests to the potential for infrastructure, once made available, to have an impact on research.

On the other hand, this same willingness also illustrates the need for improvements to infrastructure, given

that the Siemens and space artifacts present only a small sample of the population of programs, versions,

tests, and faults. It seems reasonable, then, to expect our extended infrastructure to be used for experimen-

tation by others, and to help extend the validity of experimental results through widened scope. Indeed,

we ourselves have been able to use several of the newer infrastructure objects that are about to be released

in controlled experiments described in recent publications [12, 13, 14, 15, 29, 38], as well as in publications

currently under review.

In terms of impact, it is also worthwhile to discuss the costs involved in preparing infrastructure; it

is these costs that we save when we re-use infrastructure. For example, the emp-server and bash objects

required between 80 and 300 person-hours per version to prepare; two faculty and five graduate research

assistants have been involved in this preparation. The flex, grep, make, sed and gzip programs involved

two faculty, three graduate students, and five undergraduate students; these students worked 10-20 hours

per week on these programs for between 20 and 30 weeks. These costs are not costs typically affordable by

researchers; it is only by amortizing the costs over the potential controlled experiments that can follow that

we render the costs acceptable.

Finally, there are several additional potential benefits to be realized through sharing of infrastructure in

terms of challenges addressed; these translate into a reduction of threats to validity that would exist were

the infrastructure not shared. By sharing our infrastructure with others, we can expect to receive feedback

that will improve it. User feedback will allow us to improve the robustness of our tools and the clarity and

completeness of our documentation, enhancing the opportunities for replication of experiments, aggregation

of findings, and manipulation of individual factors.

Where future work is concerned, a primary consideration involves implementing mechanisms for further

sharing and community development of the infrastructure. At the moment, the web address provided in

Section 4.3 provides contact information by which users may obtain a user-id and password, and through

which they can access the infrastructure. This small level of access control provides us with a limited method

for identifying users of the infrastructure, so that we can inform them of modifications or enhancements, and

contact them with questions about its use.

As future work, we are considering various additional mechanisms for encouraging researchers who use

our infrastructure to contribute additions to it in the form of new fault data, new test suites, and variants

of programs and versions that function on other operational platforms.

One possible approach is to use our web portal as the core mechanism for distributing, obtaining feedback

on, and collecting new artifacts and documentation. In addition to providing a registration site for users,

the web portal can let researchers provide comments on and evaluations of the downloaded artifacts. This

information, together with usage statistics (e.g., number of downloads, number of experiments using arti-

facts), will help researchers determine what their peers are employing for experimentation, and the individual

strengths and weakness of each artifact. We envision that each artifact could have an evaluation rating, a

popularity index, and a set of compiled comments. This data could also help us guide further refinements

of the available artifacts, and identify artifacts of interest that may be missing.

As a mechanism for longer-term support, a more refined management model involves forming a repository

steering committee, that includes representation from the user community, whose role is to set policies that

govern the operation, maintenance and expansion of the repository. Such a committee could have several

permanent members to ensure appropriate institutional memory, and also a number of rotating members.

While the steering committee’s role would be purely policy oriented, the work to be performed in order to

maintain, update and expand the repository would be organized in the spirit of the “open source” model.

Ultimately, through mechanisms such as this, we hope that the community of researchers will be able to as-

semble additional artifacts using the formats and tools prescribed, and contribute them to the infrastructure;

this in turn will increase the range and representativeness of artifacts available to support experimentation.

Furthermore, we hope through this effort to aid the entire testing research community in pursuing controlled

experimentation with testing techniques, increasing our understanding of these techniques and the factors

that affect them in ways that can be achieved only through such experimentation.

Acknowledgements

We thank the current and former members of the Galileo and MapsText research groups for their contribu-

tions to our experiment infrastructure. These and other contributors are acknowledged individually on the

web pages through which our infrastructure is made available. We also thank the Siemens researchers, and

especially Tom Ostrand, for providing the Siemens programs and much of the initial impetus for this work,

and Phyllis Frankl, Filip Vokolos, and Alberto Pasquini for providing most of the materials used to assemble

space infrastructure. Finally, this work has been supported by NSF awards CCR-0080898 and CCR-0347518

to the University of Nebraska - Lincoln, and by NSF awards CCR-9703108, CCR-9707792, CCR-0080900,

and CCR-0306023 to Oregon State University.

References

[1] J. Andrews, L. Briand, and Y. Labiche. Is mutation an appropriate tool for testing experiments? In

Int’l. Conf. Softw. Eng., May 2005.

[2] V. Basili, R. Selby, E. Heinz, and D. Hutchens. Experimentation in software engineering. IEEE Trans-

actions on Software Engineering, 12(7):733–743, July 1986.

[3] V. Basili, F. Shull, and F. Lanubile. Building knowledge through families of experiments. IEEE

Transactions on Software Engineering, 25(4):456–473, 1999.

[4] B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, New York, NY, 1990.

[5] J. Bible, G. Rothermel, and D. Rosenblum. Coarse- and fine-grained safe regression test selection. ACM

Transactions on Software Engineering and Methodology, 10(2):149–183, April 2001.

[6] D. Binkley. Semantics guided regression test cost reduction. IEEE Transactions on Software Engineer-

ing, 23(8):498–516, August 1997.

[7] D. Binkley, R. Capellini, L. Raszewski, and C. Smith. An implementation of and experiment with

semantic differencing. In Int’l. Conf. Softw. Maint., November 2001.

[8] T. Budd and A. Gopal. Program testing by specification mutation. Computer Languages, 10(1):63–73,

1985.

[9] Y.F. Chen, D.S. Rosenblum, and K.P. Vo. TestTube: A system for selective regression testing. In Int’l.

Conf. Softw. Eng., pages 211–220, May 1994.

[10] A. Coen-Porisini, G. Denaro, C. Ghezzi, and P. Pezze. Using symbolic execution for verifying safety-

critical systems. In Proceedings of ACM Foundations of Software Engineering, 2001.

[11] M. Delamaro, J. Maldonado, and A. Mathur. Interface mutation: An approach for integration testing.

IEEE Transactions on Software Engineering, 27(3), March 2001.

[12] H. Do and G. Rothermel. A controlled experiment assessing test case prioritization techniques via

mutation faults. In Int’l. Conf. Softw. Maint., September 2005.

[13] H. Do, G. Rothermel, and A. Kinneer. Empirical studies of test case prioritization in a JUnit testing

environment. In Int’l. Conf. Softw. Rel. Eng., November 2004.

[14] S. Elbaum, D. Gable, and G. Rothermel. The Impact of Software Evolution on Code Coverage. In Int’l.

Conf. Softw. Maint., pages 169–179, November 2001.

[15] S. Elbaum, P. Kallakuri, A. Malishevsky, R. Rothermel, and S. Kanduri. Understanding the effects of

changes on the cost-effectiveness of regression testing techniques. Journal of Software Testing, Verifi-

cation and Reliability, 12(2), 2003.

[16] S. Elbaum, A. Malishevsky, and G. Rothermel. Incorporating varying test costs and fault severities into

test case prioritization. In Int’l. Conf. Softw. Eng., pages 329–338, May 2001.

[17] M. Ernst, A. Czeisler, W. Griswold, and D. Notkin. Quickly detecting relevant program invariants. In

Int’l. Conf. Softw. Eng., June 2000.

[18] P. G. Frankl and S. N. Weiss. An experimental comparison of the effectiveness of branch testing and

data flow testing. IEEE Transactions on Software Engineering, 19(8):774–787, August 1993.

[19] M. Harder and M. Ernst. Improving test suites via operational abstraction. In Int’l. Conf. Softw. Eng.,

May 2003.

[20] J. Hartmann and D.J. Robson. Techniques for selective revalidation. IEEE Software, 16(1):31–38,

January 1990.

[21] D. Hoffman and C. Brealey. Module test case generation. In 3rd Workshop on Softw. Testing, Analysis,

and Verif., pages 97–102, December 1989.

[22] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments on the effectiveness of dataflow- and

controlflow-based test adequacy criteria. In Int’l. Conf. Softw. Eng., pages 191–200, May 1994.

[23] http://www.junit.org.

[24] N. Juristo, A. M. Moreno, and S. Vegas. Reviewing 25 years of testing technique experiments. Empirical

Software Engineering: An International Journal, 9(1), March 2004.

[25] J. Kim and A. Porter. A history-based test prioritization technique for regression testing in resource

constrained environments. In Int’l. Conf. Softw. Eng., May 2002.

[26] B. Kitchenham, S. Pfleeger, L. Pickard, P. Jones, D. Hoaglin, K. Emam, and J. Rosenberg. Preliminary

guidelines for empirical research in software engineering. IEEE Transactions on Software Engineering,

28(8):721–734, August 2002.

[27] B. Kitchenham, L. Pickard, and S. Pfleeger. Case studies for method and tool evaluation. IEEE

Software, pages 52–62, July 1995.

[28] H.K.N. Leung and L. White. Insights into regression testing. In Int’l. Conf. Softw. Maint., pages 60–69,

October 1989.

[29] A. G. Malishevsky, G. Rothermel, and S. Elbaum. Modeling the cost-benefits tradeoffs for regression

testing techniques. In Int’l. Conf. Softw. Maint., pages 230–240, October 2002.

[30] B. Marick. Software Test Automation: Effective Use of Test Execution Tools. Addison-Wesley, Septem-

ber 1999.

[31] M. Marre and A. Bertolino. Using spanning sets for coverage testing. IEEE Transactions on Software

Engineering, 29(11), November 2003.

[32] A. Offutt, G. Rothermel, R. Untch, and C. Zapf. An experimental determination of sufficient mutant

operators. ACM Transactions on Software Engineering and Methodology, 5(2), April 1996.

[33] V. Okun, P. Black, and Y Yesha. Testing with model checkers: insuring fault visibility. WSEAS

Transactions on Systems, 2(1):77–82, January 2003.

[34] K. Onoma, W-T. Tsai, M. Poonawala, and H. Suganuma. Regression testing in an industrial environ-

ment. Comm. ACM, 41(5):81–86, May 1988.

[35] T.J. Ostrand and M.J. Balcer. The category-partition method for specifying and generating functional

tests. Comm. ACM, 31(6), June 1988.

[36] L. Pickard and B. Kitchenham. Combining empirical results in software engineering. Inf. Softw. Tech.,

40(14):811–821, August 1998.

[37] Sandra Rapps and Elaine J. Weyuker. Selecting software test data using data flow information. IEEE

Transactions on Software Engineering, SE-11(4):367–375, April 1985.

[38] G. Rothermel, S. Elbaum, A. Malishevsky, P. Kallakuri, and B. Davia. The impact of test suite

granularity on the cost-effectiveness of regression testing. In Int’l. Conf. Softw. Eng., May 2002.

[39] G. Rothermel and M.J. Harrold. Selecting tests and identifying test coverage requirements for modified

software. In Int’l. Symp. Softw. Testing Anal., August 1994.

[40] G. Rothermel and M.J. Harrold. Analyzing regression test selection techniques. IEEE Transactions on

Software Engineering, 22(8):529–551, August 1996.

[41] G. Rothermel and M.J. Harrold. A safe, efficient regression test selection technique. ACM Transactions

on Software Engineering and Methodology, 6(2):173–210, April 1997.

[42] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold. Test case prioritization. IEEE Transactions on

Software Engineering, 27(10):929–948, October 2001.

[43] W. Tichy, P. Lukowicz, E. Heinz, and L. Prechelt. Experimental evaluation in computer science: a

quantitative study. Journal of Systems and Software, 28(1):9–18, January 1995.

[44] W. Trochim. The Research Methods Knowledge Base. Atomic Dog, Cincinnati, OH, 2nd edition, 2000.

[45] F. I. Vokolos and P. G. Frankl. Empirical evaluation of the textual differencing regression testing

technique. In Int’l. Conf. Softw. Maint., pages 44–53, November 1998.

[46] E. Weyuker. The evaluation of program-based software test data adequacy criteria. Comm. ACM,

31(6), June 1988.

[47] C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell, and A. Wesslen. Experimentation in Software

Engineering: An Introduction. Kluwer Academic Publishers, 2000.

[48] W. E. Wong, J. R. Horgan, A. P. Mathur, and A. Pasquini. Test set size minimization and fault

detection effectiveness: A case study in a space application. In Proceedings of the Computer Software

Applications Conference, pages 522–528, August 1997.

[49] W.E. Wong, J.R. Horgan, S. London, and H. Agrawal. A study of effective regression testing in practice.

In Eighth Intl. Symp. Softw. Rel. Engr., pages 230–238, November 1997.

[50] T. Xie and D. Notkin. Macro and micro perspectives on strategic software quality assurance in resource

constrained environments. In Proceedings of EDSER-4, May 2002.

[51] R. K. Yin. Case Study Research : Design and Methods (Applied Social Research Methods, Vol. 5). Sage

Publications, London, UK, 1994.

[52] M. Zelkowitz and D. Wallace. Experimental models for validating technology. IEEE Computer, pages

23–31, May 1998.

Appendix A

Table 5: Research articles involving testing and empirical studies in six major venues, 1994-2003 (articles by
authors of this paper excluded).

Year TSE TOSEM ISSTA ICSE FSE ICSM
P T EST P T EST P T EST P T EST P T EST P T EST

2003 74 8 7 7 0 0 - - - 74 6 2 33 4 4 39 4 3
2002 73 7 3 14 2 0 23 11 4 55 2 2 17 0 0 60 8 7
2001 53 4 3 8 1 0 - - - 60 4 2 28 3 3 67 3 2
2000 62 5 2 14 0 0 20 9 1 66 4 1 17 2 2 24 0 0
1999 46 1 0 12 1 0 - - - 58 4 2 29 1 1 35 3 1
1998 72 3 2 12 1 1 16 9 1 37 0 0 22 2 1 31 2 2
1997 50 5 4 11 0 0 - - - 52 4 2 27 3 1 34 2 1
1996 59 8 2 12 4 1 29 13 1 53 5 3 17 2 1 34 1 1
1995 70 4 1 10 0 0 - - - 31 3 1 15 1 1 30 4 1
1994 68 7 1 12 3 1 17 10 1 30 5 2 17 2 0 38 3 1

Total 627 52 25 112 12 3 105 52 8 516 37 17 222 20 14 396 34 23

Table 6: Further classification of published empirical studies (articles by authors of this paper excluded).

Publication Empirical Example Case Controlled Multiple Multiple Tests Faults Shared
Papers Study Experiment Programs Versions Artifacts

TSE (1999-2003) 15 0 9 6 12 5 13 4 2
TSE (1994-1998) 10 1 9 0 5 1 7 1 0
TSE (1994-2003) 25 1 18 6 17 6 20 5 2

TOSEM (1999-2003) 0 0 0 0 0 0 0 0 0
TOSEM (1994-1998) 3 1 1 1 2 1 3 2 0
TOSEM (1994-2003) 3 1 1 1 2 1 3 2 0
ISSTA (1999-2003) 5 0 4 1 4 1 5 0 0
ISSTA (1994-1998) 3 0 2 1 3 1 3 1 0
ISSTA (1994-2003) 8 0 6 2 7 2 8 1 0
ICSE (1999-2003) 9 1 4 4 6 3 9 4 3
ICSE (1994-1998) 8 0 6 2 4 6 8 3 1
ICSE (1994-2003) 17 1 10 6 10 9 17 7 4
FSE (1999-2003) 10 2 6 2 5 2 8 1 0
FSE (1994-1998) 4 0 2 2 3 2 4 2 0
FSE (1994-2003) 14 2 8 4 8 4 12 3 0

ICSM (1999-2003) 13 2 10 1 9 8 7 1 2
ICSM (1994-1998) 6 3 3 0 2 2 1 1 0
ICSM (1994-2003) 19 5 13 1 11 10 8 2 2

Total (1999-2003) 52 5 33 14 36 19 42 10 7
Total (1994-1998) 34 5 23 6 19 13 26 10 1
Total (1994-2003) 86 10 56 20 55 32 68 20 8

